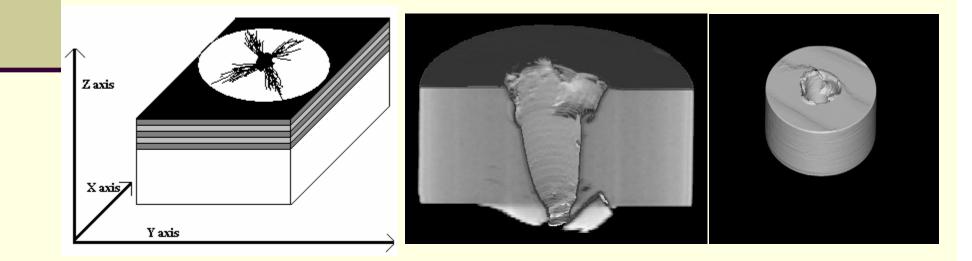
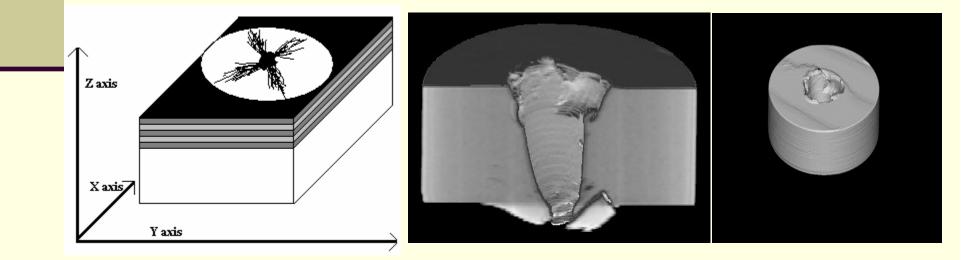
The Analysis and Classification of Images


Generated by X-Ray Computed Tomography

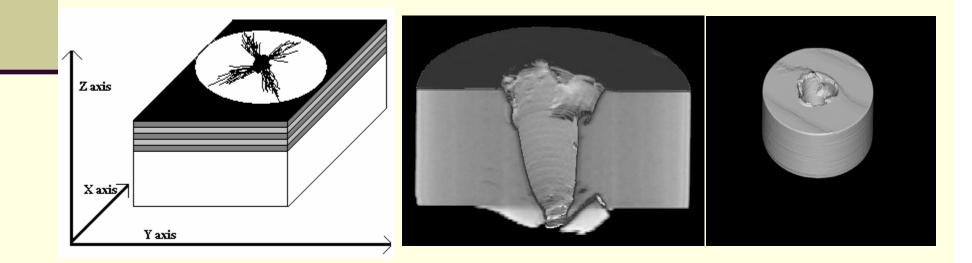
By: Michael Lowery University of California – Santa Cruz In Collaboration with: Jeff Wheeler, University of Kentucky – Lexington, KY

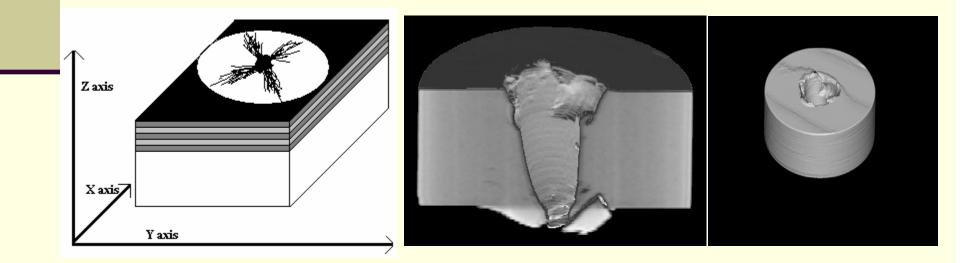
Introduction and Overview


X Ray Computed Tomography (XCT)

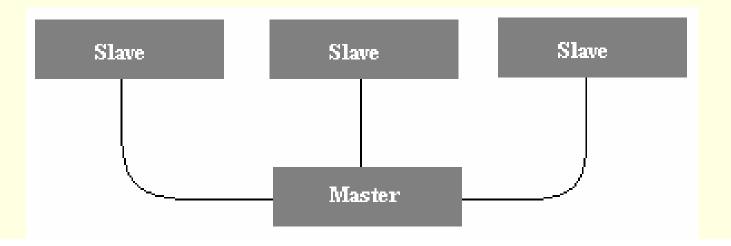
- Python script used to convert XCT images to binary format
- Images processed based on XCT image size
 - 512x512 Image would have a 512x512 pixel matrix
- Calculations based on Central Axis of Penetration

Introduction and Overview

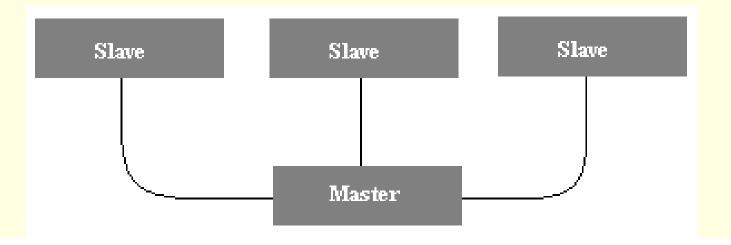

- X Ray Computed Tomography (XCT)
 - Python script used to convert XCT images to binary format
 - Images processed based on XCT image size
 - 512x512 Image would have a 512x512 pixel matrix
 - Calculations based on Central Axis of Penetration


- X Ray Computed Tomography (XCT)
 - Python script used to convert XCT images to binary format
 - Images processed based on XCT image size
 - 512x512 Image would have a 512x512 pixel matrix

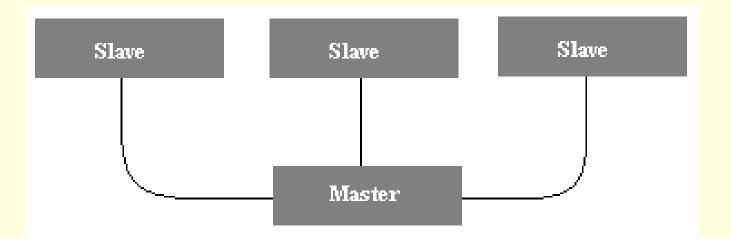
Calculations based on Central Axis of Penetration



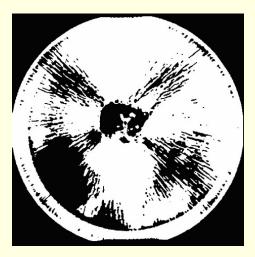
- X Ray Computed Tomography (XCT)
 - Python script used to convert XCT images to binary format
 - Images processed based on XCT image size
 - 512x512 Image would have a 512x512 pixel matrix
 - Calculations based on Central Axis of Penetration


Computing Environment

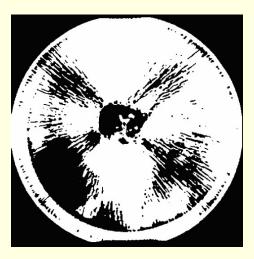
- Parallel Computing Hardware
 - 8x 2Ghz Dell Precision Workstations w/1GB Ram
 - Interconnection via Gigabit Ethernet
- Parallel Computing Software
 - OSCAR (Open Source Cluster Application Resources) <u>http://oscar.openclustergroup.org</u>
 - Communication between nodes facilitated via LAM-MPI
- Parallel Algorithm is Embarrassingly Parallel
 - Work is sent to nodes based on a simple work distribution algorithm
 - Node 1 gets 10%, Node 2 gets 10% ...
 - Upon Completion, all finished work is collected by the Master Node


Computing Environment

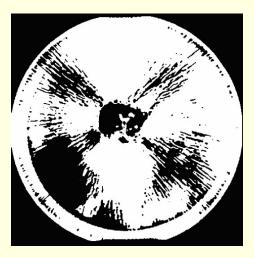
- Parallel Computing Hardware
 - 8x 2Ghz Dell Precision Workstations w/1GB Ram
 - Interconnection via Gigabit Ethernet
- Parallel Computing Software
 - OSCAR (Open Source Cluster Application Resources) <u>http://oscar.openclustergroup.org</u>
 - Communication between nodes facilitated via LAM-MPI
- Parallel Algorithm is Embarrassingly Parallel
 - Work is sent to nodes based on a simple work distribution algorithm
 - Node 1 gets 10%, Node 2 gets 10% ...
 - Upon Completion, all finished work is collected by the Master Node


Computing Environment

- Parallel Computing Hardware
 - 8x 2Ghz Dell Precision Workstations w/1GB Ram
 - Interconnection via Gigabit Ethernet
- Parallel Computing Software
 - OSCAR (Open Source Cluster Application Resources) <u>http://oscar.openclustergroup.org</u>
 - Communication between nodes facilitated via LAM-MPI
- Parallel Algorithm is Embarrassingly Parallel
 - Work is sent to nodes based on a simple work distribution algorithm
 - Node 1 gets 10%, Node 2 gets 10% ...
 - Upon Completion, all finished work is collected by the Master Node


Calling Function and Notation

- Database Conventions and Notation:
 - The image data is stored in a vector, and accessed via special function
 - Given the (X, Y, Z) coordinate, the function returns it's value for analyses
 - Allows for multiple data extraction methodologies with out drastic code changes
 - Analyses Results Access:
 - F(X,Y,Z)
 - X : Method of decomposition
 - Y : Subsection size (User defined)
 - Z : Current subsection being analyzed
 - Decomposition Method:
 - 1) Square sub matrices
 - 2) Radian wedge slices
 - 3) Annular ring segments


Calling Function and Notation

- Database Conventions and Notation:
 - The image data is stored in a vector, and accessed via special function
 - Given the (X, Y, Z) coordinate, the function returns it's value for analyses
 - Allows for multiple data extraction methodologies with out drastic code changes
 - Analyses Results Access:
 - F(X,Y,Z)
 - X : Method of decomposition
 - Y : Subsection size (User defined)
 - Z : Current subsection being analyzed
 - Decomposition Method:
 - 1) Square sub matrices
 - 2) Radian wedge slices
 - 3) Annular ring segments

Calling Function and Notation

- Database Conventions and Notation:
 - The image data is stored in a vector, and accessed via special function
 - Given the (X, Y, Z) coordinate, the function returns it's value for analyses
 - Allows for multiple data extraction methodologies with out drastic code changes
 - Analyses Results Access:
 - F(X,Y,Z)
 - X : Method of decomposition
 - Y : Subsection size (User defined)
 - Z : Current subsection being analyzed
 - Decomposition Method:
 - 1) Square sub matrices
 - 2) Radian wedge slices
 - 3) Annular ring segments

Square Matrix Decomposition

Assume each Image is a 512 x 512 binary map
 Divide the map into 32 x 32 pixel sub matrices
 Leaving a square of 16 isolated sub matrices

Use Calling Function F(1, 32, 7) to access sub divided matrices of 32 pixels square, and run average destruction analysis for image 7 if it isn't already available

Square sub matrices are the simplest decomposition, they allow rapid analysis and easy cross referencing between stored images

Square Matrix Decomposition

Assume each Image is a 512 x 512 binary map
 Divide the map into 32 x 32 pixel sub matrices
 Leaving a square of 16 isolated sub matrices

Use Calling Function F(1, 32, 7) to access sub divided matrices of 32 pixels square, and run average destruction analysis for image 7 if it isn't already available

Square sub matrices are the simplest decomposition, they allow rapid analysis and easy cross referencing between stored images

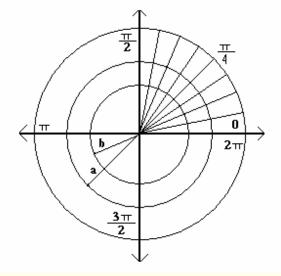
Square Matrix Decomposition

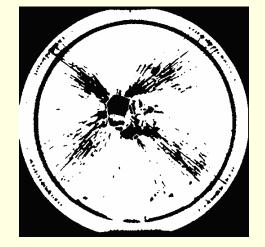
Assume each Image is a 512 x 512 binary map
 Divide the map into 32 x 32 pixel sub matrices
 Leaving a square of 16 isolated sub matrices

Use Calling Function F(1, 32, 7) to access sub divided matrices of 32 pixels square, and run average destruction analysis for image 7 if it isn't already available

Square sub matrices are the simplest decomposition, they allow rapid analysis and easy cross referencing between stored images

Radian Wedge Decomposition

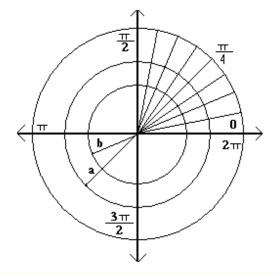

Image Interval :

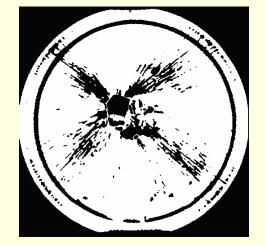

• Let n range over the interval [$0 : 2 \pi$] in [$\pi / 2^n$] increments ($\pi / 8, \pi / 16, \pi / 32 \dots$)

• Let (a > b) : Area in the annulus is defined as: $\pi(a^2 - b^2)$

- User defined and adjustable depending on detail
- Run MPI image analysis to determine destruction
- Comparisons can be based on corresponding wedge segments from different images
- Sections are accessed via the calling function:

F(2, $[\pi / 2^n]$, z) where z is the location of the marker


Radian Wedge Decomposition


Image Interval :

• Let n range over the interval [$0 : 2 \pi$] in [$\pi / 2^n$] increments ($\pi / 8, \pi / 16, \pi / 32 \dots$)

- Let (a > b) : Area in the annulus is defined as: $\pi(a^2 b^2)$
 - User defined and adjustable depending on detail
 - Run MPI image analysis to determine destruction
 - Comparisons can be based on corresponding wedge segments from different images
 - Sections are accessed via the calling function:

F(2, $[\pi / 2^n]$, z) where z is the location of the marker

Library and Processes

- Library coded using C++, Python, and mySQL
 - Calling function F(x, y, z) used to compare individual sub sections
 - Results that are not available are automatically computed and added to the database
 - Stored data can be called and its average compared with our current data

Variations and PhotoShop Filters

- PhotoShop Sharpening/Blurring Filters
 - Blurring filters decrease number of pixels
 - Borderline edges are smoothed creating a binary image with less detail – i.e. less pixels
 - Fewer pixels streamline processing
- Cross referencing can be done between different data extraction methods to verify accuracy between techniques.
- Currently under development: Graphical User Interface (GUI) for a user friendly version.

Variations and PhotoShop Filters

- PhotoShop Sharpening/Blurring Filters
 - Blurring filters decrease number of pixels
 - Borderline edges are smoothed creating a binary image with less detail – i.e. less pixels
 - Fewer pixels streamline processing
- Cross referencing can be done between different data extraction methods to verify accuracy between techniques.
- Currently under development: Graphical User Interface (GUI) for a user friendly version.

Variations and PhotoShop Filters

- PhotoShop Sharpening/Blurring Filters
 - Blurring filters decrease number of pixels
 - Borderline edges are smoothed creating a binary image with less detail – i.e. less pixels
 - Fewer pixels streamline processing
- Cross referencing can be done between different data extraction methods to verify accuracy between techniques.
- Currently under development: Graphical User Interface (GUI) for a user friendly version.

Conclusions and Summary

- Images are analyzed in the following manner:
 - Decomposed from n x m into sub squares, radian wedges, or annular rings
 - MPI parallelization computes average destruction percentages
 - Image Analyses stored and accessed via
 F(x,y,z)
 - Cross referencing is done from images already stored in the library
 - Finally, images can be altered in Photoshop to net different results

Conclusions and Summary

- Images are analyzed in the following manner:
 - Decomposed from n x m into sub squares, radian wedges, or annular rings
 - MPI parallelization computes average destruction percentages
 - Image Analyses stored and accessed via
 F(x,y,z)
 - Cross referencing is done from images already stored in the library
 - Finally, images can be altered in Photoshop to net different results

Personal Info

Author:

- Michael Lowery
 - University of California Santa Cruz
 - Computational Mathematics
 - Phone:
 - (408) 712 7356
 - Email:
 - mplowery@gmail.com
 - Mailing Address:
 - 2081 Bohannon Dr.
 - Santa Clara, Ca 95050

Co Author:

- Jeffrey Wheeler
 - University of Kentucky Lexington KY
- Email:
 - birdjeff@scipp.ucsc.edu